Thursday, June 1, 2017

Resilience to climate change in agricultural systems

Climate change is impacting agroecosystems widely. Ecological connectivity makes regions more resilient and hence helps conserve biodiversity and combat climate change, while ecologically sound analysis and management help keep agroecosystems alive. In this context, a bioeconomic approach may help guide the integration of natural and human systems. In Umbria, the origin of this approach was the opening lecture of TreviNatura (Trevi, Italy 25-27 October 2015) delivered by Professor Andrew P. Gutierrez (CASAS Global) and titled  "The economy of nature and humans: the role of ecosystem services" that illustrated the often conflicting interaction between humans and nature, and how this interaction can be best understood using bioeconomics, with ecosystem services playing a central role. The region of Umbria in Central Italy is particularly amenable to developing and implementing a holistic approach to the integrated management of agricultural and natural ecosystems, because this region has pioneered biodiversity conservation and management at both national and European level, and it is about to deploy a third improved version of its Regional Ecological Network. Notably, the local environmental protection agency ARPA Umbria is committed to a systemic vision of the environment where the different components (e.g., agricultural, natural, urban) interact in complex ways and hence may not be managed separately. This commitment will build capacity by developing specific research projects, higher education, and training. The Workshop "Biodiversity for ecologically based resilience to climate change in agricultural systems" was a key step for developing a Summer School on Agroecology, to be held during 2018 at the Polvese Island's Research Center for Climate Change and Biodiversity in Wetlands and Lakes (see the draft program for the Center).

Workshop - Biodiversity for ecologically based resilience to climate change in agricultural systems. Department of Agricultural, Food and Environmental Sciences, University of Perugia, Italy, 31 May 2017. Program and info


Monday, March 13, 2017

Bt cotton in India: critique of a macro analysis

This paper is a critique of Srivastava and Kolady (Current Science, 2016; 110: 3-10) who reported a macro analysis of the benefits of Bt cotton in India using statewide average data. The analysis is in error with respect to the economic benefits, biological underpinnings, and the effects of Bt cotton technology adoption on resource-poor farmers growing rainfed cotton. Viable non-GMO high-density cotton alternatives that increase yields, reduce cost of production, and give higher net average returns were ignored. The authors argue for biotechnology adoption in other crops in India without providing data or analysis

Gutierrez A.P., Ponti L., Baumg√§rtner, J., 2017. A critique on the paper ‘Agricultural biotechnology and crop productivity: macro-level evidences on contribution of Bt cotton in India’. Current Science, 112: 690-693. Full text free to download

Trends for cotton yield, pesticide use and the percentage of total cotton growing area planted to Bt cotton.

Friday, December 23, 2016

Impact of the rosette weevil on yellow starthistle

Yellow starthistle (Centaurea solstitialis L.) (YST) is an invasive weed native to the Mediterranean region with a geographical centre of diversity in Turkey. It is widely established in Chile, Australia, and western North America. It arrived in California as a contaminant in alfalfa seed in 1859 and, by 2002, had infested more than 7.7 million hectares in the U.S.A. Biological control of YST using capitula feeding weevils, picture wing flies and a foliar rust pathogen has been ongoing in the western U.S.A. for more than three decades with limited success. Modelling and field research suggest natural enemies that kill whole plants and/or reduce seed production of survivors are good candidates for successful biological control. A candidate species with some of these attributes is the rosette weevil Ceratapion basicorne (Illiger). In the present study, a model of the rosette weevil is added to an extant system model of YST and its capitula feeding natural enemies and, in a GIS context, is used to assess YST control in the Palearctic region and the weevil's potential impact on YST in western U.S.A. The results obtained suggest densities of mature YST plants in western U.S.A. would be reduced by 70–80% in many areas.

Gutierrez A.P., Ponti L., Cristofaro M., Smith L., Pitcairn M.J., 2016. Assessing the biological control of yellow starthistle (Centaurea solstitialis L.): prospective analysis of the impact of the rosette weevil (Ceratapion basicorne (Illiger)). Agricultural and Forest Entomology, https://doi.org/10.1111/afe.12205

The rosette weevil Ceratapion basicorne.

Thursday, November 17, 2016

Earth observation: bridging the gap to crop-pest systems

The workshop "When Space Meets Agriculture" aimed at promoting a better understanding of the significance and potential of Europe’s space systems (EGNOS/Galileo and Copernicus) for the agricultural sector. While introducing Rural Development Programmes of selected regions and exploring opportunities to set synergies for the development of space applications for the agriculture sector, it will present the main strands of the European Agriculture Policy and more generally link the space community to the agriculture community. Our contribution identified recent and prospective holistic analyses of climate change effects on crop-pest systems in the Mediterranean Basin. The approach used in the analyses involves using physiologically based demographic modeling (PBDM) of crop-pest-natural enemy interactions in the context of a geographic information system (GIS). A major goal is to link the PBDM/GIS technology with increasingly available biophysical datasets from global modeling and satellite observations, and use them to bridge the gap between bottom-up (primarily physiological and population dynamics) and top-down (climatological) GIS approaches for assessing on ground ecosystem level problems, such as agricultural pests.

Ponti L., Gutierrez A.P., Iannetta M., 2016. Climate change and crop-pest dynamics in the Mediterranean Basin. When Space Meets Agriculture: Fostering Interregional collaborations, investments and definition of user requirements. Workshop organized by NEREUS, the Network of European Regions Using Space Technologies, Matera, Italy, 14‐15 November 2016. | Presentation freely available online

Conceptual diagram representing how physiologically-based demographic models bridge the gap between bottom-up (primarily physiological and population dynamics) and top-down (climatological, remote sensing, and ecological niche modeling) GIS approaches for assessing on-ground ecosystem-level problems such as agricultural pests (see Rocchini et al. 2015).