Posts

Showing posts with the label Agroforestry

Why radiation use efficiency is lower in super high-density than in high-density olive orchards

Image
We quantified the photosynthetically active radiation (PAR) interception in a high-density (HD) and a super high-density (SHD) or hedgerow olive system, by measuring the PAR transmitted under the canopy along transects at increasing distance from the tree rows. Transmitted PAR was measured every minute, then cumulated over the day and the season. The frequencies of the different PAR levels occurring during the day were calculated. SHD intercepted significantly but slightly less overall PAR than HD (0.57 ± 0.002 vs. 0.62 ± 0.03 of the PAR incident above the canopy) but had a much greater spatial variability of transmitted PAR (0.21 under the tree row, up to 0.59 in the alley center), compared to HD (range: 0.34–0.43). This corresponded to greater variability in the frequencies of daily PAR values, with the more shaded positions receiving greater frequencies of low PAR values. The much lower PAR level under the tree row in SHD, compared to any position in HD, implies greater self-shading...

Improving light modeling in agroforestry systems

Image
By averaging in time and/or space, models predict less variable light patterns under tree canopies than in reality. We measured light every minute in 24 positions in a grid under different chestnut orchards, for several clear and overcast days. We also modelled this light with a purposely created 3D, spatially explicit, ray-tracing light interception model, where canopy porosity was calibrated to match measured daily light. Finally, we used both the measured and modeled light patterns transmitted under the tree canopies to estimate the daily net photosynthesis (An) and radiation use efficiency (RUE) of an understory wheat leaf. As expected, modeled light was more uniform than measured light, even at equal daily light. This resulted in large overestimation of daily An and RUE of the understory leaf. Averaging light in time increased the overestimations even further. A sensitivity analysis showed that this overestimation remained substantial over the range of realistic values for leaf ph...