Posts

Showing posts from September, 2016

Crop-pest dynamics in the Mediterranean Basin

Image
Climate change will make assessing and managing crop-pest systems in the Mediterranean Basin more difficult than elsewhere on the globe. The Basin is in many ways a hot spot of global change, as higher than average projected climate change threatens an extremely rich and intertwined biological and cultural diversity, and increases its vulnerability to biological invasions. As a consequence, pest problems in this hot spot will require a holistic approach to deconstruct the elusive complex interactions that are the underpinning basis for sound decision making at the field level. Building on 30+ years of multidisciplinary progress inspired by pioneering work at University of California , the ENEA GlobalChangeBiology project in collaboration with CASAS Global is developing an interdisciplinary tool to mechanistically describe (i.e., model), analyze and manage agro-ecological problems based on the unifying paradigm that all organisms including humans acquire and allocate resources by analog

Invasiveness of spotted wing Drosophila

Image
The polyphagous Asian vinegar fly Drosophila suzukii (spotted wing Drosophila) is a native of Eastern and Southeastern Asia. It emerged as an important invasive insect pest of berries and stone fruits in the Americas and Europe beginning in 2008. Species distribution models are commonly used for analyzing the extant and potential range expansion of invasive species. Previous modeling efforts for D. suzukii include a degree-day model, a MaxEnt ecological niche model, a demographic model incorporating the effects of temperature, and a preliminary mechanistic physiologically-based demographic model (PBDM). In the present analysis, we refine the PBDM for D. suzukii based on biological data reported in the literature. The PBDM is used to assess the effects of temperature and relative humidity from a recently published global climate dataset (AgMERRA) on the prospective geographic distribution and relative abundance of the pest in the USA and Mexico, and in Europe and the Mediterranean Ba

Traditional farming and the Mediterranean diet

Image
The Mediterranean diet is described by the UNESCO Cultural Heritage of Humanity website ( http://www.unesco.org/culture/ich/en/RL/00884 ) as encompassing more than just food of the various cultures. These diets are embedded in bio-cultural landscapes that are at risk from global markets, industrial agriculture, invasive species and climate change, and yet little research aimed at conserving this Mediterranean agricultural heritage is being conducted. A focus on preserving traditional Mediterranean agricultural systems provides unique opportunities to link UNESCO-SCBD’s Joint Programme on Biological and Cultural Diversity ( http://www.cbd.int/lbcd/ ​) and FAO’s Globally Important Agricultural Heritage Systems initiative (GIAHS, http://www.fao.org/giahs/ ) with the goal of developing strategies and policy to preserve this heritage and the food production systems that are its basis for future generations. An important step in this direction is the development of holistic ecosystem-level a