Posts

Showing posts with the label biological control

Bio-economic analysis of coffee berry borer control

Image
 Coffee, after petroleum, is the most valuable commodity globally in terms of total value (harvest to coffee cup). Here, our bioeconomic analysis considers the multitude of factors that influence coffee production. The system model used in the analysis incorporates realistic field models based on considerable new field data and models for coffee plant growth and development, the coffee/coffee berry borer (CBB) dynamics in response to coffee berry production and the role of the CBB parasitoids and their interactions in control of CBB. Cultural control of CBB by harvesting, cleanup of abscised fruits, and chemical sprays previously considered are reexamined here to include biopesticides for control of CBB such as entomopathogenic fungi (Beauveria bassiana, Metarhizium anisopliae) and entomopathogenic nematodes (Steinernema sp., Heterorhabditis). The bioeconomic analysis estimates the potential of each control tactic singly and in combination for control of CBB. The analysis explains ...

Impact of the rosette weevil on yellow starthistle

Image
Yellow starthistle ( Centaurea solstitialis L.) (YST) is an invasive weed native to the Mediterranean region with a geographical centre of diversity in Turkey. It is widely established in Chile, Australia, and western North America. It arrived in California as a contaminant in alfalfa seed in 1859 and, by 2002, had infested more than 7.7 million hectares in the U.S.A. Biological control of YST using capitula feeding weevils, picture wing flies and a foliar rust pathogen has been ongoing in the western U.S.A. for more than three decades with limited success. Modelling and field research suggest natural enemies that kill whole plants and/or reduce seed production of survivors are good candidates for successful biological control. A candidate species with some of these attributes is the rosette weevil Ceratapion basicorne (Illiger). In the present study, a model of the rosette weevil is added to an extant system model of YST and its capitula feeding natural enemies and, in a GIS context...

Invasion biology of Drosophila suzukii

Image
The Asian vinegar fly Drosophila suzukii [spotted wing Drosophila (SWD)] has emerged as a major invasive insect pest of small and stone fruits in both the Americas and Europe since the late 2000s. While research efforts have rapidly progressed in Asia, North America, and Europe over the past 5 years, important new insights may be gained in comparing and contrasting findings across the regions affected by SWD. In this review, common themes in the invasion biology of SWD are explored by examining (1) its biology and current pest status in endemic and recently invaded regions; (2) current efforts and future research needs for the development of predictive models for its geographic expansion; and (3) prospects for both natural and classical (=importation) biological control of SWD in invaded habitats, with emphasis on the role of hymenopteran parasitoids. The review concludes that particularly fruitful areas of research should include fundamental studies of its overwintering, host-use, and...

Invasive species and climate change: the PBDM approach

Image
Assessing the geographic distribution and abundance of invasive species is critical for developing sound management and/or eradication policies. Ecological niche modelling approaches (ENMs) that make implicit assumptions about biology and mathematics are commonly used to predict the potential distribution of invasive species based on their recorded distribution. An alternative approach is physiologically based demographic modelling (PBDM), which explicitly incorporates the mathematics and the observed biology, including trophic interactions, to predict the temporal phenology and dynamics of a species across wide geographic areas. The invasive weed, yellow starthistle (YST) (Centaurea solstitialis), and its interactions with annual grasses and herbivorous biological control agents is used to demonstrate the utility of the PBDM approach for analysing complex invasive species problems. The PBDM predicts the distribution and relative abundance of YST accurately across the western USA, and ...

Asian citrus psyllid and citrus greening disease

Image
The invasive Asian citrus psyllid Diaphorina citri Kuwayama vectors the bacterial pathogen ‘Candidatus Liberibacter asiaticus’ that is the putative causal agent of citrus greening disease (Huanglongbing disease) in citrus in many areas of the world. The capacity to predict the potential geographic distribution, phenology and relative abundance of the pest and disease is pivotal to developing sound policy for their management. A weather-driven physiologically based demographic model (PBDM) system is developed that summarizes the available data in the literature, and used to assess prospectively the geographic distribution and relative abundance of citrus, the psyllid, its parasitoid ( Tamarixia radiata Waterston), and citrus greening disease in North America and the Mediterranean Basin. The potential for natural and biological control of citrus psyllid is examined prospectively. Gutierrez A.P., Ponti L., 2013. Prospective analysis of the geographic distribution and relative abundance...

Deconstructing the control of the spotted alfalfa aphid

Image
Control of insect pests and other taxa may be due to many factors that are difficult to separate and quantify as was the case for the control of the spotted alfalfa aphid (SAA, Therioaphis maculata Monell) in California and elsewhere. Introduced parasitoids, host plant resistance, pathogens and native predators led to its successful control, but the relative contribution of each factor remained largely unknown. The relative contribution of each control factor was estimated using a weather-driven physiologically-based demographic system model consisting of alfalfa, SAA (a), its three exotic parasitoids [ Trioxys complanatus (Quilis) (b), Praon palitans Muesebeck (c), and Aphelinus semiflavus Howard (d)], a native coccinellid beetle [ Hippodamia convergens (Guérin-Menéville)], a fungal pathogen [ Erynia neoaphidis Remaudière & Hennebert (Zygomycetes: Entomophthorales) (g)], and host plant resistance (HPR) (h). Alone, each factor failed to control SAA, as did combinations of the ...